Advanced Accelerator Applications Technical Quarterly Review

(Covering January-June 2002)

Transmutation Science--University Support WBS 1.27

Denis Beller, University Programs Leader July 10, 2002

Universities Working for Transmutation Sciences

- University of Michigan
 - Reactor/transmutation Studies
 - Irradiation experiments
- University of California—Berkeley
 - Reactor/transmutation Studies
 - Code development and benchmarking
- University of Texas—Austin
 - Proliferation Resistance
 - Spallation Product Yield Measurements
- North Carolina State University
 - CINQ radiation effects

University of Michigan Progress Jan-Jun

- Reactivity Measurement & Control studies
- Reactor/transmutation Studies
- Irradiation experiments
- Experiment support

University of Michigan Reactivity Measurement & Control

- Space-time corrected area-ratio (Sjöstrand) method developed to measure reactivity in source driven system
- Requires computed shape function and prompt neutron lifetime
- Predicted reactivity insensitive to detector placement and shape function computation

University of Michigan Slowing down spectrum & cross sections

- Spectrum due to 14 MeV neutrons slowing down in Pb shows deep flux depression between 11.6 and 14 MeV
- Produced by non-elastic effects
- MC**2 fast-spectrum code successfully recovers essential features of this depression
- MC**2 spectrum deviates from MCNP at lower energy – due to (n,2n) cross section

University of Michigan LWR-Based Transmutation Studies

 Equilibrium cycles generated for homogeneous and heterogeneous loadings.

Heterogeneous results compare well with CORAIL

concept.

 Heterogeneous loading leads to somewhat lower Pu inventory (4/5) than homogeneous.

 Both loadings produce zero net change in Pu inventory at equilibrium.

Recycle 40 (quasi-equilibrium)						
Fuel Content	Heterogeneous		Homogeneous			
²³⁵ U (wt%) ^a	4.00		3.97			
Pu (wt%) ^b	12.42		15.00			
Fissile Pu (wt%)	39.70		40.97			
Element	BOC		BOC			
U	519.0	-26.6	515.0	-26.8		
Np	0.0	0.3	0.0	0.3		
Pu	16.1	0.0	20.0	0.0		
Am	0.0	1.2	0.0	1.5		
Cm	0.0	0.4	0.0	0.3		
Total TRU	16.1	1.9	20.0	2.1		
Total HM	535.1	-24.7	535.1	-24.7		

University of Michigan HT-9 & T-91 Materials Irradiations

- Alloy HT-9 and T-91 stock was received, machined into irradiation bars and shipped to UM
- Samples were pre-injected with 100 appm He at room temperature to simulate He production under irradiation.
- First irradiation to 3 doses between 3 and 10 dpa at 450°C scheduled to begin in July, 2002.
- Hardness and micro-structural analysis to follow

University of Michigan Plans through Sep '02

- Analysis of Coupled Accelerator Core Dynamics
 - Perform realistic tests of the space-time reactivity formulation for pulsed source experiments presented in the summary for the Fall ANS Conference
 - Study the applicability of the space-time pulsed-source formulation for detector signals obtained in the reflector region.
- LWR Based Reactor Transmutation Study
 - Study multi-recycling of plutonium that allows for the depletion of Pu from spent fuel stockpile, not merely recycling of self-generated Pu.
 - Study multi-recycling of Pu+Np and eventually entire transuranics in an equilibrium cycle configuration.

University of Michigan Plans through Sep '02 (cont'd)

LBE Slowing Down Spectrum Analysis

- Study numerical fidelity of spectral analysis options in the MC2 fast spectrum code
- Evaluate the adequacy of neutron cross sections, especially (n,2n) cross sections, in the mid-MeV range and below.

AAA Target Irradiation Experiments

- Participate in the AAA target irradiation experiments at LANSCE
- Analyze the July 2002 irradiation data for spectral indices and other key attributes and compare with MCNPX simulations

HT-9 and T-91 Material Irradiations

- First irradiation of HT-9 and T-91 samples to 3 doses between 3 and 10 dpa at 450°C scheduled to begin in July, 2002.
- Hardness and microstructural analysis will be performed following the irradiation.

University of Michigan Proposed for FY03

- Develop Coupled Accelerator Core Dynamics Model (\$75K)
 - Develop a coupled modal-local space-time kinetics model
 - Study stability and control issues for ADS systems
- Compare LWR and LMR Transmutation Systems (\$60K)
 - Perform equilibrium cycle comparison thermal and fast reactors
 - Compare fuel configurations with varying TRU compositions.
- Develop Multi-Objective Global Fuel Cycle Analysis Methodology (\$75K)
 - LWR equilibrium cycle methodology with the CASMO assemblylevel lattice physics code and the REBUS fuel cycle code
 - Develop a global fuel cycling methodology accounting optimally for waste disposal and non-proliferation objectives
- Spallation Neutron Material Irradiations (\$75K)
 - Irradiate corrosion coupons and perform microstructure and micro-chemical analysis of irradiated samples
 - Broaden dose, temperature, and alloy conditions and plan for future irradiations

UC-Berkeley Progress Jan-Jun

- Completed the Optimization of Molten Salt ATW NaF-ZrF₄ (see next viewgraph)
- Developed WACOM, simplified code to analyze multicycle transmutation systems
- Benchmarked MOCUP code (UCB) for core design and analysis against the DIF3D/REBUS3 code (KAERI and ANL)

An illustration of a MSR -- an interesting option for Tier 1 transmuter

Fuel feed TRU from LWR spent fuel Mode of operation Continuous feed; once through

Average power density 390 W/cm³ of molten salt MS channel diameter 7 cm

C/MS volume ratio 3

Fractional transmutation 90%

Total power

k_{eff} w/o fission products

k_{eff} with removal of FP

Accelerator power

Graphite lifetime

Possible scenario

Question

10,000 MW_t

1.0

0.99^(a); stays constant (equilibrium)

As for $2GW_t$ ATW with k_{eff} (min)=0.95

15 months

Use one accelerator and one BOP to serve two

MSR cores; one operating and one changing C.

Is it possible to clean graphite sufficiently well f

rom actinides and fission products?

⁽a)An Estimate. Xe is removed immediately; max. Sm □k_{eff} < 0.4%

Epithermal MS Reactors are promising transmuters with Carbon to Molten Salt ratio (C/MS) of about 1 to 3

Radial leakage will reduce $k_{\rm eff}$ by 1-2%. Fission Products will also reduce $k_{\rm eff}$

It is possible to design MSR to have k_{eff}(equilibrium) ~
 0.98 without exceeding solubility limit.

k_{eff} stays constant with time.

- Optimal C/MS ~ 1 3
- Fractional transmutation in one pass > 90%
- Graphite lifetime ~ 15 months (C/MS = 3)
- Average core power density ~ 100 W/cm³ (vs. ~10 HTGR)

k_{eff} evolution in benchmark study of critical Pb-Bi cooled core (results of various code systems using ENDF-B/VI-based cross sections)

UC-Berkeley Plans through Sep '02

- Study approach to equilibrium in the MS transmuting reactor
- Study feasibility of MS transmuters based on LiF-BeF₂
 salt
- Develop algorithm to account for variation of effective one group cross section and leakage probability with HM loading for the simplified fuel cycle model
- Complete the comparison of Na vs. LBE cooled ATW
- Assess transmutation capability of pebble-bed ATW

UC-Berkeley Proposed for FY03

- Transmutation Studies (\$175k)
 - Study effect of fission products on MS transmuting reactor performance
 - Work out a conceptual design of a reference MS transmuting reactor
 - Study feasibility of MS reactors as Tier-2 transmuters
 - Complete assessing the transmutation capability of pebble-bed ATW
 - Study the feasibility of transmutation in liquid-metalcooled reactors while maintaining constant k_{eff}
- Repository Performance (\$90k)
 - Inter-compare waste inventory and toxicity from different transmutation systems, as measured by repository performance criteria

UT-Austin Progress Jan-Jun

- Proliferation Resistance Assessment methodology with timedependence has been completed
 - this uses detailed input data and weighting factors from 24 experts
 - has been applied to four long term nuclear fuel systems
 - results for two systems of interest to AAA are shown in following plot
- The methodology has been fully documented
 - Nuclear Technology paper detailing the methodology and results has been produced and will be submitted for publication soon (likely in July)
- AAA Fellow Coy Bryant was graduated with a M.S.
 - thesis: "Developing Computer Models for Solvent Extraction Processes for Optimizing Flowsheets for Actinide Transmutation and Analyzing Their Technical Benefits/Liabilities and Proliferation Resistance"

UT-Austin Proliferation resistance for two fuel cycles (draft results pending peer review)

UT-Austin Plans through Sep '02

- Proliferation Resistance Assessments
 - add uncertainties to methodology
 - analyze ATW cycles and options in detail
- Spallation Product Yield Measurements
 - New contract/work package
 - Student at LANL
 - Plan experiments at LANSCE to measure spallation product yields for several materials of interest to AAA (e.g., Na)
 - Include short-, medium-, and long-lived radionuclides in measurements and comparisons to MCNPX calculations with existing data

UT-Austin Proposed for FY03

- Spallation Product Yield Measurements (\$60k)
 - conduct experiments at LANSCE to measure various spallation product yields of interest to AAA
 - » this effort is currently funded until May 2003
- Proliferation Resistance Assessments (\$60k)
 - integrate assessment methodology with visual coding and interface to increase usability
 - apply methodology to more cycles (including other separations techniques)
 - collect more expert data on weighting factors and "red team" methodology with LANL experts

North Carolina State University

- Studying radiation effects on CINQ Targets, Mark II and Mark III
- See separate presentation

Other Plans (University Programs)

FY02

- Finish LANL contracts with UC Berkeley, NCSU, and UT-Austin and
- Finish ANL contracts with U of Michigan and MIT (not under WBS 1.27)
- Add U of Illinois (Ning Li, \$60k)
 - » test active online corrosion probes for LBE to monitor corrosion in-situ
- U of Michigan will host a University Workshop in August

• FY03

- UC Berkeley will host a University Workshop in April 2003
 - » Overlap with ANS Annual Student Conference
- University Consortium for Transmutation Research

FY03 LANL Universities Budget (\$850 k) (does not necessarily match university proposals)

•	University Programs management	150
•	University of Michigan	
	 Reactor/transmutation Studies 	125
	 Irradiation experiments 	160
•	University of California—Berkeley	
	 Reactor/transmutation Studies Code development and benchmarking 	175
•	University of Texas—Austin	
	 Proliferation Resistance 	60
	 H & He implantation experiments 	60
•	North Carolina State University	
	 CINQ radiation effects 	60
•	Univ of Illinois	
	 LBE corrosion probes 	60